| | 朱紅梅,副教授,碩士生導(dǎo)師 電子郵件: zhm403@163.com 通信地址:數(shù)學(xué)與信息科學(xué)學(xué)院 郵 編: 453007 |
|
| |
|
教育經(jīng)歷: 2002.9-2005.7 商丘師范學(xué)院數(shù)學(xué) 2007.9-2010.7 北京工業(yè)大學(xué)基礎(chǔ)數(shù)學(xué)碩士 2010.9-2014.7 北京大學(xué)基礎(chǔ)數(shù)學(xué)博士 2019.8-2020.9 美國(guó)印第安那大學(xué)-普渡大學(xué)聯(lián)合分校,訪問學(xué)者 工作經(jīng)歷: 2014.9-2022.4 河南師范大學(xué)講師 2022.04-至今河南師范大學(xué) 副教授 |
|
芬斯勒幾何 |
|
主講本科生課程:《解析幾何》、《常微分方程》、《高等數(shù)學(xué)》、《高等代數(shù)》 主講研究生課程:《幾何專題I》、《微分纖維從》 |
|
|
|
1河南師范大學(xué)青年科學(xué)基金“一類具有正交不變的芬斯勒度量”No2015QK01 2015.10-2018.10(主持) 2 國(guó)家自然科學(xué)基金-天元基金“一類芬斯勒度量的非黎曼曲率的研究”No 11626091 2017.01-2017.12 (主持) 3 國(guó)家自然科學(xué)基金-青年基金“芬斯勒空間中若干問題的研究”No. 1190011740 2017. 01-2022.12 (主持) |
|
[1] Hongmei Zhu* , On a class of projectively Ricci-flat Douglas Metrics, Houston J. Math. For accepted.
[2] Hongmei Zhu*, On a Class of Quasi-Einstein Finsler Metrics, The Journal of Geometric Analysis (2022) 32:195.(SCI)
[3] Hongmei Zhu*, Ranran Li,On projective Riemann curvature, Differential Geometry and its Applications 82 (2022) 101883.(SCI)
[4] Hongmei Zhu*, On a class of projective Ricci curvature of Finsler metrics, International Journal of Mathematics, 2021,32(11), 2150084, pp18. (SCI)
[5] Hongmei Zhu*, On a class of projectively Ricci-flat Finsler metrics, Differential Geometry and its Applications, 2020, 73:101680 .(SCI)
[6] Hongmei Zhu*, Finsler warped product metrics with almost vanishing H-curvature , International Journal of Geometric Methods in Modern Physics , 2020, 17(12): 2050188. (SCI)
[7] Hongmei Zhu*, On general -metrics with isotropic S-curvature, Journal of Mathematical Analysis and Applications, 2018, 464(2): 1127-1142.(SCI)
[8] Hongmei Zhu*, Haixia Zhang, Projective Ricci flat spherically symmetric Finsler metrics, International Journal of Mathematics, 2018,29(11), 18500178, pp13.(SCI)
[9] Hongmei Zhu*, On a class of Douglas Finsler metrics, Acta Mathematica Scientia, 2018, 38B(2):695-708. (SCI)
[10] Hongmei Zhu*, On a class of spherically symmetric Finsler metrics with isotropic S-curvature, Differential Geometry and its Applications, 2017, 51:102-108.(SCI)
[11] Hongmei Zhu*, On a class of Finsler metrics with isotropic Berwald curvature, Bulletin of the Korean Mathematical Society, 2017, 54(2):399-416.(SCI)
[12] Hongmei Zhu*, On a class of Finsler metrics with relatively isotropic mean Landsberg curvature, Publicationes Mathematicae-Debrecen, 2016, 89(4), 483-498. (SCI)
[13] Hongmei Zhu*, On general -metrics with vanishing Douglas curvature, International Journal of Mathematics, 2015, 26(9): 1550076-1-1550076-16.(SCI)
[14] Hongmei Zhu*, A class of Finsler metrics of scalar flag curvature, Differential Geometry and its Applications, 2015, 40: 321-331.(SCI)
[15] Xiaohuan Mo, Hongmei Zhu*, On a class of locally projectively flat Finsler metrics, Bulletin of the Iranian Mathematical Society, 2017, 43(3):735-746.(SCI)
[16] Changtao Yu, Hongmei Zhu*, On singular square metrics with vanishing Douglas curvature, Result in Mathematics, 2017, 72:679-694.(SCI)
[17] Xiaohuan Mo, Hongmei Zhu, On a projective class of Finsler metrics with orthogonal invariance, Differential Geometry and its Applications 52 (2017) 167–180. (SCI)
[18] Xiaohuan Mo, Hongmei Zhu, ON A CLASS OF LOCALLY PROJECTIVELY FLAT GENERAL (α, β)-METRICS, Bull. Korean Math. Soc. 54 (2017), No. 4, pp. 1293–1307.(SCI)
[19] Changtao Yu, Hongmei Zhu*, Projectively flat general -metrics with constant [20] flag curvature, Journal of Mathematical Analysis and Applications, 2015,429(2),1222-1239.(SCI)
[21] Xiaohuan Mo, Hongmei Zhu , Some results on strong Randers metrics, Period Math Hung (2015) 71:24–34.(SCI)
[22] Xiaohuan Mo, Hongmei Zhu , ON A CLASS OF PROJECTIVELY FLAT FINSLER METRICS OF NEGATIVE CONSTANT FLAG CURVATURE, International Journal of Mathematics Vol. 23, No. 8 (2012) 1250084 (14 pages).(SCI)
[23] Changtao Yu, Hongmei Zhu*, On a new class of Finsler metrics, Differential Geometry and its Applications 29 (2011) 244–254.(SCI)